66 research outputs found

    Introducing CatOracle: Corpus-based concatenative improvisation with the Audio Oracle algorithm

    Get PDF
    CATORACLE responds to the need to join high-level control of audio timbre with the organization of musical form in time. It is inspired by two powerful existing tools: CataRT for corpus-based concatenative synthesis based on the MUBU for MAX library, and PYORACLE for computer improvisation, combining for the first time audio descriptor analysis and learning and generation of musical structures. Harnessing a user-defined list of audio fea- tures, live or prerecorded audio is analyzed to construct an “Audio Oracle” as a basis for improvisation. CatOracle also extends features of classic concatenative synthesis to include live interactive audio mosaicking and score-based transcription using the BACH library for MAX. The project suggests applications not only to live performance of written and improvised electroacoustic music, but also computer-assisted composition and musical analysis

    WW domain-mediated interaction with Wbp2 is important for the oncogenic property of TAZ

    Get PDF
    The transcriptional co-activators YAP and TAZ are downstream targets inhibited by the Hippo tumor suppressor pathway. YAP and TAZ both possess WW domains, which are important protein–protein interaction modules that mediate interaction with proline-rich motifs, most commonly PPXY. The WW domains of YAP have complex regulatory roles as exemplified by recent reports showing that they can positively or negatively influence YAP activity in a cell and context-specific manner. In this study, we show that the WW domain of TAZ is important for it to transform both MCF10A and NIH3T3 cells and to activate transcription of ITGB2 but not CTGF, as introducing point mutations into the WW domain of TAZ (WWm) abolished its transforming and transcription-promoting ability. Using a proteomic approach, we discovered potential regulatory proteins that interact with TAZ WW domain and identified Wbp2. The interaction of Wbp2 with TAZ is dependent on the WW domain of TAZ and the PPXY-containing C-terminal region of Wbp2. Knockdown of endogenous Wbp2 suppresses, whereas overexpression of Wbp2 enhances, TAZ-driven transformation. Forced interaction of WWm with Wbp2 by direct C-terminal fusion of full-length Wbp2 or its TAZ-interacting C-terminal domain restored the transforming and transcription-promoting ability of TAZ. These results suggest that the WW domain-mediated interaction with Wbp2 promotes the transforming ability of TAZ
    corecore